Stepping Motors (Single Items)

How to Read Specifications

I	Bipolar, lead type		2	3	4	6	6	0	8
D	Model no.		Holding torque at 2-phase excitation	Rated current	Winding resistance	Winding inductance	Rotor inertia	Mass	Motor length (L)
	Single shaft	Dual shaft	N·m or more	A/phase	Ω/phase	mH/phase	×10 ^{-₄} kg⋅m²	kg	mm
	SH2141-5541	SH2141-5511	0.0065	0.3	21	4.2	0.00058	0.03	30
	SH2145-5641	SH2145-5611	0.01	0.4	19	4	0.0011	0.042	43.8

100

Characteristics

(

1 This is the model number of the stepping motor.

- 2 This is the maximum torque that is generated when the stepping motor is rotated by exerting an external force on the shaft at 2-phase excitation at the rated current.
- 3 This is the rated current that flows to the motor winding. When current of this value flows through a motor, the torque generated will be the same as the holding torque.
- This is the resistance for one phase of stepping motor winding.

- 0.01 SH2145-5641 SH2145-5611 0.008 Constant current circuit (M·m) Pull-out torque 0.006 Input voltage: 24 VDC Winding current: Torque 0.4 A/phase 0.004 At 2-phase excitation (full step) Pull-out torque: $J_L = 0.01 \times 10^{-4} \text{kg} \cdot \text{m}^2$ 0.002 (Pulley balancer method) fs: Maximum starting pulse 0<u>L</u> 0.1 rate with no load 100 fs Pulse rate (kpulses/s) 100 1000 2000 3000 Speed (min-1)
- 5 This is the inductance for one phase of stepping motor winding.
- 6 This is the moment of inertia of the rotor. This indicates the degree of ease with which the rotor accelerates or decelerates.
- This is the mass of the stepping motor.
- 8 This is the length of the stepping motor.
- 9 This graph shows the relationship between the pulse rate (frequency), motor speed, and pull-out torque in a full-step mode.